RumusSinus Jumlah dan Selisih Dua Sudut. * Rumus Sinus Jumlah Dua Sudut. Untuk mendapatkan rumus sin (a+b), dapat dicari dengan menggunakan rumus sudut berelasi, dan rumus cosinus selisih dua sudut yakni: Sin (90o - a) = cos a dan cos (900 - a) = sin a. Cos (90o - a) = cos a cos b + sin a sin b. Dengan menggunakan rumus di atas, didapatkan:
DayaMengurangi Rumus. 19. sin 2 A = (1/2) [1 - cos 2A] 20. cos 2 A = (1/2) [1 + cos 2A] Fungsi hiperbola. sinh 2 x = ½cosh 2x — ½. cosh 2 x = ½cosh 2x + ½. sinh 3 x = ¼sinh 3x — ¾sinh x. cosh 3 x = ¼cosh 3x + ¾cosh x. sinh 4 x = 3/8 - ½cosh 2x + 1/8cosh 4x.
Gunakanrumus perkalian cos yang ada pada uraian di atas yaitu 2 cos A cos B = cos (A + B) + cos (A - B). Jawaban : 2 cos 75° cos 15° = cos (75 +15)° + cos (75 - 15)° = cos 90° + cos 60° = 0 + ½ = ½. Itu dia kumpulan rumus dan soal-soal trigonometri yang bisa kamu pelajari dan pahami.
Rumussin, cos, dan tan sin θ = sisi depan → demi sisi miring cos θ = sisi samping → sami sin θ = a/b → cosec θ = b/a cos θ = c/b → sec θ = b/c tan θ = a/c → cotan θ = c/a Trigonometri Segitiga Sembarang Rumus-rumus di atas hanya dapat digunakan untuk segitiga yang berbentuk siku-siku. Untuk segitiga sembarang, maka tidak
A Mendapatkan rumus sin( A B) sin cos A.sin B dengan langkah berikut : 1. Gunakan perbandingan trigonometri untuk menyatakan a. x dalam a dan sudut A ; x = .. b. x dalam b dan sudut B; x = .. 2. Gunakan rumus luas segitiga ABC : L = ½ a b sin C, untuk menghitung a. luas segitiga PQR = b.
SinB a / Sin A = b / Sin B Selain rumus fungsi sinus di atas, adapula rumus aturan sinus lainnya yang memaparkan hubungan sudut dan panjang sisi segitiga. Maka dari itu, materi aturan sinus ini dapat dirumuskan dalam persamaan seperti di bawah ini: Aturan Sinus
RangkumanMateri Trigonometri, Matematika 10 Wajib. 1 radian (rad) didefinisikan sebagai ukuran sudut sudut pada bidang datar yang berada di antara dua jari-jari lingkaran dengan panjang busur sama dengan panjang jari-jari lingkaran itu
sin A + sin B = 2 sin ½ (A + B) cos ½ (A − B) Berdasarkan kedua rumus di atas, perbandingan antara penjumlahan kosinus dan sinus adalah: Dengan demikian: Jadi, nilai dari perbandingan trigonometri tersebut adalah ⅓√3 (D). Pembahasan soal Perbandingan Trigonometri yang lain bisa disimak di: Pembahasan Matematika IPA UN 2013 No. 27.
egsZ.
Hallo Gangs Apa kabar? Semoga kita semua selalu ada dalam lindungan-Nya. Amin. Pada kesempatan kali ini kita akan belajar tentang rumus sinus, kosinus dan tangen. Kita tidak akan sekedar mengetahui rumus-rumusnya namun kita juga akan melatih kemampuan otak kita dengan contoh-contoh soal yang akan di berikan. Okeee Gengs langsung saja yaaa Sebelum kita melangkah pada latihan soal, akan diberikan beberapa rumus yang akan kita gunakan untuk menjawab soal-soal. Perhatikan aturan-aturan berikut ini Aturan Sinus Aturan Cosinus Aturan trigonometri pada segitiga Nahhhhhh sekarang kita akan masuk pada latihan soal!!! CONTOH 1 Soal Pada △ABC diketahui bahwa sudut A = 30°, a = 6 dan b = 10. Tentukanlah nilai dari Sin B. Jawab Dengan menggunakan aturan sinus. Akan di peroleh rumus sebagai berikut Rumus di atas bisa kita tuliskan ke dalam a sin B = b sin A 6 sin B = 10 sin 30° 6 sin B = 10 x ½ sin B = 5/6 CONTOH 2 Soal Pada segitiga PQR diketahui besar sudut P = 60°, sudut R = 45° dan panjang p = 8√3. Tentukanlah panjang sisi r. Jawab Dengan menggunakan aturan sinus. Akan di peroleh rumus sebagai berikut Sehingga dapat kita kerjakan sebagai berikut p sin R = r sin P 8√3 sin 45° = r sin 60° 8√3 x 1/2√2 = r 1/2√3 4√6 = r x 1/2√3 r = 4√6 ÷ ½√3 = 8√2 CONTOH 3 Soal Apabila diketahi △ABC dimana sudut A = 75°, sudut B = 60° dan panjang sisi c = 20. Tentukan panjang sisi b. Jawab Sebelumnya, apabila kita perhatikan baik-baik soal di atas dimana sudut yang diketahui adalah A dan B sedangkan panjang sisi yang diketahui adalah c dan b adalah panjang sisi yang ditannyaka. Dari penjelasan ini, kita tidak akan menemukan suatu rumus yang mengikuti aturan sinus. Oleh karena itu, kita harus menentukan besar sudut C-nya. besar sudut C = 180° – [75°+ 60°] = 45° Nahhhhhh setelah kita tentukan besar sudut C maka dengan mudah kita dapat tentukan aturan sinus yang akan kita gunakan untuk mengerjakan soal ini sebagai berikut. Sehingga dapat kita kerjakan sebagai berikut b sin C = c sin B b sin 45° = 20 sin 60° b ½ √2 = 20. ½√3 b ½ √2 = 10 √3 b = 10 √3 ÷ ½ √2 = 10√6 CONTOH 4 Soal Apabila diketahui suatu △ABC memiliki panjang sisi a = 12, besar sudut A = 60° dan sudut C = 45°, maka berapakah panjang sisi c? Jawab Dengan menggunakan aturan sinus. Akan diperoleh rumus sebagai berikut Sehingga dapat kita kerjakan sebagai berikut a sin C = c sin A 12 sin 45° = c sin 60° 12 x ½√2 = c x ½√3 6√2 = c x ½√3 c = 6√2 ÷ ½√3 = 4√6 CONTOH 5 Soal Jika diketahui suatu △ABC memiliki panjang sisi c = 12√2cm, besar sudut A = 105° dan besar sudut C = 45°, maka berapakah panjang sisi b? Jawab Pada soal nomor 5 ini kasusnya sama dengan soal nomo 3 dimana sudut yang diketahui adalah A dan C sedangkan panjang sisi yang diketahui adalah c dan b adalah panjang sisi yang penjelasan ini, kita tidak akan menemukan suatu rumus yang mengikuti aturan sinus. Oleh karena itu, kita harus menentukan besar sudut B-nya, sebagai berikut ini. besar sudut B = 180° – [105° + 45°] = 30° Nahhhhhh setelah kita tentukan besar sudut B maka dengan mudah kita dapat tentukan aturan sinus yang akan kita gunakan untuk mengerjakan soal ini sebagai berikut. Sehingga dapat kita kerjakan sebagai berikut b sin C = c sin B b sin 45° = 12√2 sin 60° b x ½√2 = 12√2 x ½√3 b x ½√2 = 6√6 b = 12√3 CONTOH 6 Soal Tentukan panjang sisi b apabila diketahui besar sudut A = 60°, besar sudut B = 45° dan panjang sisi a = 6√3 pada △ABC. Jawab Dengan menggunakan aturan sinus. Akan diperoleh rumus sebagai berikut Sehingga dapat kita kerjakan sebagai berikut a sin B = b sin A 6√3 x sin 45° = b sin 60° 6√3 x ½√2 = b x ½√3 3√6 = b x ½√3 b = 3√6 ÷ ½√3 = 6√2 CONTOH 7 Soal Tentukan △ABC dengan panjang sisi a = 4, b = 10 dan sin B = ½. Berapakah nilai dari cos A. Jawab Dengan menggunakan aturan sinus. Akan diperoleh rumus sebagai berikut Sehingga dapat kita kerjakan sebagai berikut a sin B = b sin A 4 ½ = 10 sin A 2 = 10 sin A sin A = 2/10 = ⅕ karena yang ditanyakan adalah cos A maka kita akan mencarinya dengan berpatokan pada nilai sin A yang telah kita peroleh, sebagai berikut cos² A = 1 – sin² A = 1 – ⅕² = 24/25 cos A = ⅖√6 CONTOH 8 Soal Sebuah △ABC memiliki panjang c = 4 , a = 6 dan b = 8 . Tentukan nilai dari cos C. Jawab Dengan menggunakan aturan cosinus. Akan diperoleh rumus sebagai berikut Sehingga dapat kita kerjakan sebagai berikut cos C = [a² + b² – c² ] ÷ [ = [6² + 8² – 4² ] ÷ = [36 + 64 – 16 ] ÷ 96 = 84 ÷ 96 CONTOH 9 Soal Sebuah △ABC memiliki panjang sisi a = 3, c = 8 dan besar sudut B = 60°. Tentukan panjang sisi b. Jawab b² = a² + c² – 2ac cos B = 3² + 8² – cos 60° = 9 + 64 – 48 ½ = 73 -24 = 49 Sehingga b = √49 = 7 CONTOH 10 Soal Diketahui △ABC dengan panjang sisi c = 9, b = 8cm dan a = 7. Tentukan nilai dari sin A. Jawab Dengan menggunakan aturan cosinus. Akan diperoleh rumus sebagai berikut Sehingga dapat kita kerjakan sebagai berikut cos A x 2bc = b² + c² – a² cos A x [ = 9² + 8² – 7² 144 cos A = 81 + 64 – 49 cos A = 96/144 = 2/3 karena yang ditanyakan adalah sin A maka kita akan mencarinya dengan berpatokan pada nilai cos A yang telah kita peroleh, sebagai berikut sin² A = 1 – cos²A = 1 – 2/3² = 1 – 4-/9 = 5/9 sin A = √5/9 = ⅓√5 CONTOH 11 Soal Pada suatu segitiga ABC diketahui panjang sisi a = 3, b = 5 dan c = 7. Tentukanlah nilai tan C. Jawab Dengan menggunakan aturan cosinus, akan diperoleh c² = a² + b² – 2ab cos C 7² = 3² + 5² – cos C 49 = 9 + 25 – 30 cos C 30 cos C = -15 cos C = – 15/30 = -1/2 Sehingga C = 120 Selanjutnya, kita tentukan nilai tan C. tan C = tan 120° = tan 180° – 60° = – tan 60° = – √3 CONTOH 12 Soal Diketahui sebuah segitiga ABC dengan panjang sisi a = 6, b = 8 dan besar sudut C = 60°. Tentukanlah panjang sisi c. Jawab Dengan menggunakan aturan cosinus, akan diperoleh c² = a² + b² – 2ab cos C c² = 6² + 8² – 60° c² = 36 + 64 – 96 . ½ c² = 100 – 48 = 52 Sehingga akan diperoleh sebagai berikut c = √52 = 2√13 CONTOH 13 Soal Pada △ABC diketahui besar sudut C = 60°, panjang sisi c = 12 dan panjang sisi a = 15. Tentukan luas segitiga ABC. Jawab Dengan menggunakan aturan triginimetri pada segitiga, diperoleh sebagai berikut. Luas △ABC = ½ x c x a x sin C = ½ x 12 x 15 x sin 60° = ½ x 12 x 15 x ½√3 = 45√3 CONTOH 14 Soal Pada △ABC diketahui a = 2√7cm, b = 4cm dan c = 6cm. Maka tentukan nilai sin A. Jawab Dengan menggunakan aturan cosinus, diperoleh hasil sebagai berikut cos A x 2bc = b² + c² – a² cos A x = 4² + 6² – 2√7² 48 cos A = 16 + 36 – 28 = 24 cos A =24/28 = ½ maka didapat besar sudut A = 60° Sehingga sin 60° = ½√3 CONTOH 15 Soal Misalkan sebuah segitiga ABC sama sisi memiliki panjang 8, maka Berapakah luas segitiga tersebut. Jawab Kita misalkan bahwa segitiga sama sisi tersebut memiliki besar sudut yang sama yaitu 45° dan semua sisi memiliki panjang yang sama sehingga luasnya didapat seperti ini Luas △ABC = ½ x s x s x sin α = ½ x s x s x sin 45 = ½ x 12 x 12 x ½√2 = 36√2 CONTOH 16 Soal Jika diketahui △ABC memiliki besar sudut A = 65°, B = 55°, panjang sisi b = 6 dan panjang sisi a = 8, maka tentukan luas segitiga tersebut adalah Jawab Karena sin C-nya belum diketahui, maka kita cari dahulu nilai sin C. Besar sudut C = 180° – [65° + 55°] = 60° Sesudah mendapatkan nilai sin C maka selanjutnya kita mengerjakan berdasarkan aturan segitiga pada trigonometri sebagai berikut Luas △ABC = ½ x a x b x sin 60° = ½ x 6 x 8 x ½√3 = 12√3 Demikian cintoh-contoh soalnya. Semoga bermanfaat
Cos A - Cos B, an important identity in trigonometry, is used to find the difference of values of cosine function for angles A and B. It is one of the difference to product formulas used to represent the difference of cosine function for angles A and B into their product form. The result for Cos A - Cos B is given as 2 sin ½ A + B sin ½ B - A. Let us understand the Cos A - Cos B formula and its proof in detail using solved examples. 1. What is Cos A - Cos B Identity in Trigonometry? 2. Cos A - Cos B Difference to Product Formula 3. Proof of Cos A - Cos B Formula 4. How to Apply Cos A - Cos B Formula? 5. FAQs on Cos A - Cos B What is Cos A - Cos B Identity in Trigonometry? The trigonometric identity Cos A - Cos B is used to represent the difference of cosine of angles A and B, Cos A - Cos B in the product form using the compound angles A + B and A - B. We will study the Cos A - Cos B formula in detail in the following sections. Cos A - Cos B Difference to Product Formula The Cos A - Cos B difference to product formula in trigonometry for angles A and B is given as, Cos A - Cos B = - 2 sin ½ A + B sin ½ A - B or Cos A - Cos B = 2 sin ½ A + B sin ½ B - A Here, A and B are angles, and A + B and A - B are their compound angles. Proof of Cos A - Cos B Formula We can give the proof of Cos A - Cos B trigonometric formula using the expansion of cosA + B and cosA - B formula. As we stated in the previous section, we write Cos A - Cos B = 2 sin ½ A + B sin ½ B - A. Let us assume two compound angles A and B, given as A = X + Y and B = X - Y, ⇒ Solving, we get, X = A + B/2 and Y = A - B/2 We know, cosX + Y = cos X cos Y - sin X sin Y cosX - Y = cos X cos Y + sin X sin Y cosX + Y - cosX - Y = -2 sin X sin Y ⇒ Cos A - Cos B = - 2 sin ½ A + B sin ½ A - B ⇒ Cos A - Cos B = 2 sin ½ A + B sin ½ B - A Hence, proved. How to Apply Cos A - Cos B Formula? We can apply the Cos A - Cos B formula as a difference to the product identity. Let us understand its application using an example of cos 60º - cos 30º. We will solve the value of the given expression by 2 methods, using the formula and by directly applying the values, and compare the results. Have a look at the below-given steps. Compare the angles A and B with the given expression, cos 60º - cos 30º. Here, A = 60º, B = 30º. Solving using the expansion of the formula Cos A - Cos B, given as, Cos A - Cos B = 2 sin ½ A + B sin ½ B - A, we get, Cos 60º - Cos 30º = 2 sin ½ 60º + 30º sin ½ 30º - 60º = - 2 sin 45º sin 15º = - 2 1/√2 √3 - 1/2√2 = 1 - √3/2. Also, we know that Cos 60º - Cos 30º = 1/2 - √3/2 = 1- √3/2. Hence, the result is verified. ☛ Related Topics on Cos A + Cos B Trigonometric Chart Law of Cosines sin cos tan Law of Sines Trigonometric Functions Let us have a look at a few examples to understand the concept of cos A - cos B better. FAQs on Cos A - Cos B What is Cos A - Cos B in Trigonometry? Cos A - Cos B is an identity or trigonometric formula, used in representing the difference of cosine of angles A and B, Cos A - Cos B in the product form using the compound angles A + B and A - B. Here, A and B are angles. How to Use Cos A - Cos B Formula? To use Cos A - Cos B formula in a given expression, compare the expansion, Cos A - Cos B = 2 sin ½ A + B sin ½ B - A with given expression and substitute the values of angles A and B. What is the Formula of Cos A - Cos B? Cos A - Cos B formula, for two angles A and B, can be given as, Cos A - Cos B = 2 sin ½ A + B sin ½ B - A. Here, A + B and A - B are compound angles. What is the Expansion of Cos A - Cos B in Trigonometry? The expansion of Cos A - Cos B formula is given as, Cos A - Cos B = 2 sin ½ A + B sin ½ B - A, where A and B are any given angles. How to Prove the Expansion of Cos A - Cos B Formula? The expansion of Cos A - Cos B, given as Cos A - Cos B = 2 sin ½ A + B sin ½ B - A, can be proved using the 2 sin X sin Y product identity in trigonometry. Click here to check the detailed proof of the formula. What is the Application of Cos A - Cos B Formula? Cos A - Cos B formula can be applied to represent the difference of cosine of angles A and B in the product form of sine of A + B and sine of A - B, using the formula, Cos A - Cos B = 2 sin ½ A + B sin ½ B - A.